

Digital Quality

Preparing for the New Era

J. Ravikant Vice President and Head – Corp. TQM

10 August 2018, Chennai

Presentation Outline

- 1. Overview of SRF and Businesses
- 2. Experience sharing Digital Quality in the Value Chain

Technical Textiles Business

3. Experience sharing – IoT and Warehouse Management

Packaging Films Business

4. Key Learning

1. Overview of SRF

Company Overview

A chemical based multi-business manufacturing entity

- Established in 1970
- An Indian multinational

Operations

- 3 countries
- 15 manufacturing locations

- Revenue : ₹ 5,685 Cr (17-18)
- PAT : ₹ 462 Cr.
- Exports : > 75 countries
- Global workforce: 6300+

Deming Prize

2004: Tyre Cord Business

2012: Chemicals Business

TQM adopted as management way (1991)

SRF Businesses

2. Digital Quality in the Value Chain Technical Textiles

Evolution of IT Systems in Technical Textiles Bus.

IT enables QCD in the Value Chain

Production Process Systems Integration with OPM

Using DCS, Datalog, Barcode

- Purpose: Raise Quality levels, eliminate complaint phenomena, cost down
 Data and process integrity, Muda reduction, faster approvals for new products
- Based on stage-gate based QA system Q0-Q13
- 3-year phase-wise project (2012-15)

- Involvement of Bus. Quality team in design: FMEA ++
- **Product traceability** : dipped cord ← batch of chips
- **51% ROI** annually (substandard reduction, textile efficiency)

Building Product Traceability – Barcode + RFID

Final Product + In process barcodes

Date

Customer :

Commodity :

No.

Product ·

Needs:

- Each customer unique product Length of roll, Twist...
- High probability of operational errors, ٠ mix-ups
- Losses Product Q, rework, • consumption, tracking – lots of Muda

Operational Improvements

- FMEA on 42 possible human errors leading to Q issues (protocols for conditioning, rewound cheese trolleys)
- **Barcode Process Poka Yoke assuring** ٠ yarn and cord conditioning time
- Material traceability FIFO based ٠ consumption, lot control at all stages
- Inclusion of lot details of customer • supplied materials

Benefits

DC6R2S9

Annexure (PACKING LIST) To Invoice Number 111701305

-Thiruvottiyur High RoadThiruvottiyur

Sub

Pkgs

Transporter's Name/Truck Number : GUPTA TRANSPORT / TN04AQ6503

12-JUL-2018

MRF LIMITED

111701305

. D.C.Number :

Sl. Roll Reference

1 7MR67-190-02B

Product quality, **I** lower demerits •

DIPPED NYLON TYRE CORD FABRIC

Tare

25.400

Weight

Gross

Weight

503.000

1260/2 - 25AA25D

Page No :

DC Date :

Weight

477.600 7MR67-190-02B 739 000 7MR67-190-032

Qty in Kqs.

1

Pkqs

31-JAN-2018

Net Package Number No.of

- **Reduced manual errors** •
- FG stock taking time : $240 \rightarrow 30$ min •
- **Document preparation time** • (despatch) : $30 \rightarrow 15$ min
- Customer advocacy up •

	1	1	
4	/		-
F	-	F	
	L	P	BF

Building Product Traceability – Bar code + RFID

Core Spindle Mapping

Key Information

- Yarn production
- Yarn, cord consumption
- WIP stock across process

Controls

- Eliminate Un-conditioned yarn trolley movement
- Trolley weighment with tag

Results

- Tracking real time movement of trolley lots from process to process and enhancing speed of delivery
- ➢ Reduced scanning time to weigh (Twisting) : 5 min→20s
- ➢ Decrease in cheese scanning time 15 min→ 1min
- > 30% ROI

Automating Production Data Handling - Textiles

Implementing Data logging system – Unique design

Key Information

- Efficiency %, No of Breaks/Idle, Stoppage Report, Prodn Report.
- Process parameters: Density, Speed, No. of Franz, Denier.
- Machine running status

Controls

- > Data integrity \rightarrow Product integrity
- Track Twister, Weaving, Operator efficiency.
- Stoppages phenomena
- Tracking M/c setup time

Improvements

- Data extracted through machine signals without manual intervention.
- Online information of running machines
- Reduced data collection time.
- Performance of Machines, Operators through mail alert and SMS.
- Twister η increasd from 60% \rightarrow 79%

Analysis of Textile Plant data – Enabling DM

🌺 Online Loom M	onitoring Sys	tem [Server]-[Form1]							🚰 Online Lo	om Monitoring System [Server] -	[Form1]			
25/08/12 / S	hift - 2	** **	** SRF-TTI	3M TEXTI	LE WEAVI	NG *** **		04:18:48 PM	25/08/12	/ Shift-2	** *** SRF-TTBM TEXTI	LE WEAVING *** **		04:22:01 PM
🛛 🗶 🖨 🗶 🚡		1 /1 🕨 🕅	e da				X		🛛 🛛 🖨 🍐	🚡 🛛 📢 🚽 🚺 / 1+	▶ ▶ = #\$		X	
Preview									Preview	1. · ·				
														A
	*** SRF-T	TBM TEXTILE WEAVING	***				DATALOC							
	25/08/12	16: 18					DATALOG							
	Efficiency	All / Machina / All / Cun	ront Shift / Hi	etow			oom into ver 10.		*** SR F	-TTBM TEXTILE WEAVING ***				
	Efficiency M/c No	Style		D%	Loss	in Efficiency	due to		25/08/1	2 16:21		DATALOG		
	mic no.	Style	A .0	• /0	LUSS	In Enreiciery			Stoppa	ae / All / Machine / All / Current (Shift / History	LOOM INTO VER 10.6		
	DODWED				Wp%	WT% 0/S	% LS%		M/c No	Style	Code Description	BeginTime	Duration	
	DORNIER DA72	EEE 100 A1/265	0.0	0.0	0.0	0.0 0	100.0	_	Mar	DD11				
	DA74	EFF-190-A1/310	7.6	59.4	0.0	0.0 5.	0 87.3		25/08/	2012				
	2		3.8	59.4	0.1	0.0 2.	5 93.6		NoGr	Jup				
	DRAPER								DP41	EFF-190-A1/355	9 Misc	14:00:26	00:06:20	
	DP41	EFF-190-A1/355	14.1	27.2	0.3	23.8 13.	3 48.0		DP41	EFF-190-A1/355	3 Weft	14:06:43	00:00:07	
	DP42	EFF-180-A1/355	0.0	0.0	0.0	0.0 0.	0 100.0		DP41	EFF-190-A1/355	3 Weft	14:06:53	00:00:07	
	DP43 DP76	EFF-180-A1/355	72.8	98.1	0.1	0.7 0.	6 25.7 8 00.7		DP41	EFF-190-A1/355	3 Weft	14:07:15	00:00:08	
	DP76	EFF-190-A1/310	75.0	90.0	0.0	- U.I - S. - 5.5 - 5.	0 20.7 N 23.9		DP41	EFF-19U-A1/355	3 Wett	14:07:37	00:00:42	
	DP77	EFF-190-A1/310	0.1	12.8	0.0	0.0 0.	4 99.5		DP41	EFF-190-A1/355	3 Wett	14:08:35	00:00:01	
	6		38.1	81.1	0.1	5.0 3.	9 53.1		DP41	EFF-190-A1/355	3 Wett	14:08:43	00:01:19	
	PICANOL								DP41	EFF-130-A1/355	3 Well	14.10.09	00:00:00	
	P064	EFF-190-A1/355	64.5	92.0	0.0	0.9 4.	7 29.9		DP41	EFF 100 A1/055	3 Well	14:10:21	00.00.13	
	PO65	EFF-190-A1/355	74.6	89.4	0.0	7.3 1.	5 16.5		DP41	EFE-190-41/355	3 Weft	14:10:41	00:00:01	
	P066	EFF-190-A1/355	64.3	88.6	3.9	0.0 4.	3 27.5		DP41	EFE-190-A1/355	1 Normal	14:10:43	00:00:13	
	PO67	EFF-190-A1/355	0.6	9.5	0.0	0.0 5.	0 93.9		DP41	EFE-190-A1/355	3 Weft	14:11:10	00:00:10	
	P068	EFF-100-A1/300 EFF-190-A1/310	43.3 55.0	93.8	0.0	1.8 0	3 30.1 7 41.3		DP41	EFF-190-A1/355	8 Lweft	14:11:52	00:09:47	
	PO70	EFF-180-A1/355	35.1	73.4	0.0	1.8 10.9	3 52.2		DP41	EFF-190-A1/355	3 Weft	14:22:04	00:00:59	
	P071	EFF-190-A1/355	57.9	81.2	0.0	12.0 1.	4 28.6		DP41	EFF-190-A1/355	3 Weft	14:23:05	00:00:07	
	P072	EFF-190-A1/355	81.0	99.5	0.0	0.0 0.	4 18.6		DP41	EFF-190-A1/355	3 Weft	14:23:17	00:00:37	
	9		53.0	84.9	0.6	5.1 3.	7 37.6		DP41	EFF-190-A1/355	1 Normal	14:24:11	00:04:28	
	17		41.9	83.3	0.4	4.4 3.0	6 49.6		DP41	EFF-190-A1/355	3 Weft	14:29:09	00:00:15	
									DP41	EFF-190-A1/355	3 Weft	14:29:29	00:00:20	
									DP41	EFF-190-A1/355	3 Weft	14:29:55	00:01:47	
									DP41	EFF-190-A1/355	3 Weft	14:31:45	00:00:07	
									DP41	EFF-190-A1/355	3 Weft	14:31:55	00:00:29	×
									~ <					>
DATALOO	3							VER 10.6	DATA	LOG				VER 10.6
🛃 start 🛛	6 😡 🕼	🗀 2 Win 🝷 🔀 Online	🖌 🖌	🗧 TeamVi	😡 Sent It	Microso	🔀 Microso	🕞 🗊 🐨 🔂 🤏 4:18 PM	🏄 start	🥒 🖉 🧭 🖻 2 Wn 🔹 👹	Online 🧉 *DP41* 💽 TeamVi	. 😡 Sent It 🔞 Microso	💽 Microso	🕞 🗊 🐨 🔂 🕤 4:22 PM

- Loom, Style wise efficiency report by phenomena
- POF
- Adobe Acrobat Document
- Machine wise stoppage report with phenomena

Adobe Acrobat Document

Results - Twisting

Twisting Efficiency – 3 years

We always find a better way

SBE

Information Assisted Equipment Management

Work Request Type	Today	MTD	YTD	Open Work Request (Nos) Work Order Type		Today	MTD	YTD	Open Work Order (Nos)	
Proskdown Offling	0	20	20	1/	Breakdown- Offline		0	50	50	21
Dreakuown-Offinie	0	20	20	14	14 Breakdown- Online		0	30	30	13
Breakdown-Online	0	20	20	8	Condition Mor	nitoring	0	1	1	0
Condition Monitoring	0	7	7	7	7 Modification		0	2	2	0
Plannad Shutdown 0 1/ 1/		14	14	Overhauling	Overhauling		2	2	1	
riannea shataown	V	14	14	14	PM Schedule		0	12	12	4
Process Routine Maintenance 0 1 1		1		Shutdown		0	3	3	2	
Work Reques	t Rai	sed	(N	o.)		Work	Orde	r Cı	rea	ted (No.)
Asset Nun	Parent A	sset	Department Tota			Total Cost				
MP & GR Inverter MP & GR I					erter INSTRUMENT 11				119089	
Dornier Loom	ı no	. 1	5	Hole process	under TEXTILE			37873		
Spg-2 Godet roller				Hole process	ELECT	ELECTRICAL			25043	

Assets with High maintenance cost

Asset Number	Parent Asset	Department	Total Breakdown (HRS)	
POLY LINE- C IN	POLY LINE- C IN			
POLYMERISATION PLANT	POLYMERISATION PLANT	1320.01		
(POLY LINE-C)	(POLY LINE-C)			
1ST POLYMERISER PUMP	1ST POLYMERISER PUMP	DOLY	285.05	
(P-5317 C)	(P-5317 C)	POLY	385.05	
CHIP CUTTER (M-5338 E)	CHIP CUTTER (M-5338 E) POLY		45	

Equipment Break Down in Hrs

Manual system 2002 integrates AM, PM, CBM, Spares mgmt.

Key Information

- Tracking break down hrs. \succ
- **PM Alerts** \triangleright
- **Historical data** \triangleright
- **Why-Why Analysis**
- **Calibration records**

Controls

- Compliance with statutes
- E-Mail and SMS Alert

Results

- Reduction in inventory spares **Working Capital**
- > Machine & work order level maintenance from mobile
- > Maint. expense tracking
- 100% PM on time

Automating Management Reporting – 3 Box Format

Polymerisation	Spinning	Textile	Dipping	Others
Polymerisation Production	Spinning Production	Textile Production	Dipping Production	NC Rolls
Polymerisation Waste	Spinning Waste	Textile Waste	Dipping Waste	Butts - Stock
Polymerisation Downgrade	Spinning Downgrade	Textile Downgrade	Dipping Downgrade	Rewound Yarn- Stock
Polymerisation WP	Spinning WIP	Textile WIP	Dipping WIP	Cord Bobbins
IO Ratio Lactum - Chip	IO Ratio Chip - Yarn	10 Ratio Lactum - GF	10 Ratio Lactum - DF	Stock Higher than norms-
COC Lactam - Chip	COC Chip - Yarn	IO Ratio Yarn - GF	IO Ratio GF - DF	Yarn

Problems

- Many deviations from standard (CP manual – 2000, 2006)
- Graph and monthly report updation time consuming

Key Information

- Process wise key data like Production, Waste, I/O, COC
- History data, same period data
- Factors for variance identified

Controls

- Source data populated from Oracle
- ➢ No manual intervention → Data integrity
- Revising standard format for each control point and definitions

Benefits

- Reduction in MIS preparation lead time from 7 to 2 days.
- On line availability.

All management reviews happen through Dashboard

3. IoT and Warehouse Management Packaging Films

Leveraging IoT - Improving Product Quality

Applying IoT - Improving Winding Quality

Improve roll appearance and winding quality (Packaging films)

4. Troubleshoot using IOT platform

Applying IoT - Improving Winding Quality

Improve roll appearance and winding quality (Packaging films)

(Multiple Items) 🖅

Count of Fault

27

11

5

57

Count of Fault

18

٠

171

Fault

Row Labels

Arm 2

Arm 3

Arm 4

Arm 5

Arm 6

High Level Analysis for Side 1 - Faults Manual analysis and correlation all parameters impossible **Continuous data collection** Grand Tota Castline Winder Paramtr Paramtr 86 Slitter Each arm,

Predictive analysis

(Multiple Items) 🖵

T

Arm 2

Count of Fault

5

- **Pressure Vs Tension** (median readings) plotted against good and bad batches (defets)
- shows significant differences in values of machine settings)

Optimised parameters for reducing defect levels

IT Count of Fault

9

5

4

2

2

1

1

1

1

1

27

•

•

Row Labels

83 - WRINKLES

16 - CREASES

67 - STAR MARKS

34 - IMPROPER FLUSHING

78 - UNFLUSH

69 - STEP WINDING

17 - DENTS

70 - TD FOLD

53 - RIPPLES

35 - INITIAL RIPPLES

Grand Total

Maximum faults reported on Arm 2

Maximum faults reported on

WRINKLES fault type on Arm 2

Fault

Arm

Row Labels

999

808

719

2050

1231

1025

819 1660

849

760

899

1046

940

1419

945

1749

979

Grand Tota

Applying IoT - Improving Winding Quality

Full scope

Warehouse Management System – IT enabling

Semi-automated system using bar codes and RFIDs

Warehouse Management System – IT enabling

23

Results

- Human Error Prevention in Loading
- Reduction in Physical Verification time from 1 day to 15 mins.
- Reduction in human effort (Elimination of manual movement of pallet trolley)

Further work

- Full automation of packing process
- Automation of invoicing process
- Horizontal deployment in progress at other units

4. Key learning

First Standardize, then Digitize

- Distinguish between maintenance and improvement activity
- Remove abnormalities in processes first!

(cannot improve unstable processes)!

Learning: Digitization before standardizing will often yield sub-optimal gains, at high cost!

Process Control (and IoT) – Control Chart Troubles

Choice of Characteristic	 Lagging rather than leading indicators Operational definition dubious
Control Chart preparation	 Plotting "knobs" (regulated directly) Specification lines "Warning Limits" used - tampering Outdated limits "Homogenizing" data by removing abnormal points
Control Chart usage	 Chart made, but nobody looks at it Calculate Cpk, Ppkfrom software, to give to customers – some of whom too don't understand this New chart started each month Runs ignored

Nothing is done more wrongly than control charts

Learning: First learn the correct way, then automate control charts Choose characteristics for IoT carefully, in stages

Key Takeaways

	 Grasp problems clearly (why digitize?)
Preparation for digitisation	(technology is the <i>means</i> , not the goal)
	 Plan to handle obsolescence in equipment – in collecting process data
	Educate thoroughly on basics – data, PDCA
Maturity and	Process knowledge is critical to digitization
speed of	Strength of existing systems creates a strong backbone
digitization	 Integrating the full value chain is key, piece-meal approach is sub-optimal
	 Possible to accelerate but not skip steps
	 Creating pilots first to experiment → design for scalability
	Collecting too much data is Muda! Expensive too. Choose carefully, phase-wise approach
	Use FMEA, PDPC, Pugh Matrix ++ in all IT enablement

Digital quality is a journey, not a destination

Skills for the Digital Era

Thank You

